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ABSTRACT

The reflection and transmission of wave functions at a potential step is a well-known issue in text-
books of quantum mechanics. We studied the reflection and transmission characteristics analytically when
the potential step is moving at a constant velocity v in the same direction as an incident wave function by
means of solving the time-dependent Schrödinger equation. As for an infinite potential step, it is known
that group velocity is the same as the moving velocity of the potential step. We found two interesting
results when the potential step has a finite height of V0. A transmission occurs when the kinetic energy

of an incident wave function is larger than the effective potential hight of
`
p

m
2

v +
√

V0

´2
. The other

result is that the reflectivity depends on x, which derives from the interference between the incident and
the reflected wave functions.
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1. Introduction

The reflection and transmission of wave functions
at a potential step is one of the most fundamental
issue in general textbooks on quantum mechanics.1)

It is surely a basic concept of electron tunneling
in nanoelectronics. Actually the electron tunneling
has been applied to scanning tunneling microscopy,
Josephson devices, superlattices, resonant tunneling
devices, and so on.2) When we calculate the reflectiv-
ity and transmissivity, we solve the time-independent
Shrödinger equation to obtain the wave functions of
a stationary state, and then calculate the ratio of
the reflected and the transmitted probability current
density to that of incident flux. In these calculations,
the boundary conditions are not varied with time.

We are interested in the state where the boundary
conditions depend on time. This kind of problem is
of interest for instance in expanding force fields,3) or
in the evolution of metastable states in the early uni-
verse that is an interesting issue in cosmology.4) We
treat in this article two problems of a finite or an in-
finite potential step moving with a constant velocity.
These problems are the most basic concepts of quan-
tum issues where boundary conditions are dependent
on time.

2. Infinite potential step

We solve the time-dependent Schrödinger equation
in one dimension as

i~
∂Ψ
∂t

= − ~2

2m

∂2Ψ
∂x2

, (1)

with a boundary condition that an infinite poten-
tial step is located at x = vt as shown in Fig. 1.
This is because we can not use the time-independent
Schrödinger equation with the boundary conditions
that depend on time. Since a similar analysis has
been previously reported by Luan et al.,5) we de-
scribe the essence of their theory here for the bet-
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Fig 1 The schematic diagram of a infinite potential
step.

ter understanding of the finite potential analysis de-
scribed in the next section. We assume a general so-
lution to be

Ψ(x, t) = Aei(k1x−ω1t) + Bei(k2x−ω2t), (2)

where the two terms correspond to an incident and
a reflected wave function, respectively. We should
pay attention to ~k1

m À v that means the semi-
classical point of view. The solution (2) satisfies the
Schrödinger equation (1) only when

ω1 =
~

2m
k2
1 and ω2 =

~
2m

k2
2. (3)

We consider two boundary conditions here. One
condition is that the wave function is zero (i.e.
A + B = 0) at the boundary. The other condition
should be that the first derivative of the wave func-
tion is also zero at the boundary. Since the position of
the boundary is a function of t, the latter boundary
condition can not be used in the same manner as the
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Fig 2 The schematic diagram of a finite potential
step.

boundary is fixed with respect to time. We then give
an alternative boundary condition that the phases of
the incident and the reflected wave functions at the
boundary are the same i.e. k1v−w1 = k2v−w2. This
condition comes into

k2 = −k1 +
2mv

~
, (4)

with the help of the eq. (3). The expression (4) can
be well understood as a perfectly elastic collision in
classical mechanics. From these results, we can ob-
tain the probability density:

|Ψ|2 = 4|A|2 sin2
[(

k1 −
mv

~

)
(x − vt)

]
. (5)

On the other hand, the probability current density j
becomes

j =
~

2mi

(
Ψ∗ ∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)

= 4v|A|2 sin2
(
k1 −

mv

~

)
(x − vt) . (6)

A group velocity can be calculated by dividing the
probability current density by the probability den-
sity. We find that the group velocity is equal to v.

3. Finite potential step

We consider the other case that the potential step
is as high as V0 as shown in Fig. 2. The boundary
is moving toward +x with a speed of v. We should
treat the two kinds of Schrödinger equations in the
two regions A and B as

i~
∂ΨA

∂t
= − ~2

2m

∂2ΨA

∂x2
(x ≤ vt : region A) (7)

and

i~
∂ΨB

∂t
= − ~2

2m

∂2ΨB

∂x2
+V0ΨB (vt < x : region B) ,

(8)

because transmitted wave function can exist in this
case. We assume general solutions in the two regions
as

ΨA(x, t) = Aei(k1x−ω1t) + Bei(k2x−ω2t) (9)

and ΨB(x, t) = Cei(k3x−ω3t). (10)

The first and the second terms in (9) correspond to
an incident and a reflected wave function, respec-
tively. The solution (10) corresponds to the trans-
mitted wave function. We can obtain

ω1 =
~

2m
k2
1, ω2 =

~
2m

k2
2 and ω3 =

~
2m

k2
3 +

V0

~
(11)

in the same way as the infinite potential step. We
give two boundary conditions as

A + B = C (12)

and k1v − ω1 = k2v − ω2 = k3v − ω3. (13)

The condition (12) derives from our assumption that
the phase of each wave function is the same. From
the relationship expressed in (13) we can obtain the
expressions:

k2 = −k1 +
2mv

~
(14)

and k3 =
mv

~
+

√(
k1 −

mv

~

)2

− 2mV0

~2
. (15)

When we substitute v = 0 in expressions (14) and
(15), we can arrive at the well-known expressions
for the potential step without moving. The expres-
sion (14) describes the perfect elastic reflection at
the boundary similarly with the case of the infinite
potential step. In order to investigate the expression
(15), we should understand k1 should be greater than
mv/~. This is required for the collision of the inci-
dent wave function at the boundary. We should also
pay attention to another critical point where the sign
of the expression inside the root in (15) is changed;

k1 =
mv

~
+

√
2mV0

~
. (16)

If k1 is greater than the critical value at (16), the
transmitted wave function is oscillating; otherwise,
it is of a damping oscillation. The critical wave num-
ber is dependent on v. The first term in (16) is the
effect of the moving of the potential step. We can
understand that

(√
m
2 v +

√
V0

)2
is the effective po-

tential height of the step.

(A) Case I (k1 > (16))

We consider the case that the transmitted wave
function is oscillating. Using the expressions (11),
(14) and (15), the probability density in the two re-
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gions are calculated as

|ΨA|2 = |A|2 + |B|2 + A∗Be−i{2(k1−mv
~ )(x−vt)}

+ AB∗ei{2(k1−mv
~ )(x−vt)} (17)

and |ΨB |2 = |C|2, (18)

where asterisks stand for the complex conjugate. On
the other hand, the probability current densities in
the two regions become

jA =
~
m

[(
k1|A|2 + k2|B|2

)

+
mv

~

{
AB∗ei{2(k1−mv

~ )(x−vt)}

+ A∗Be−i{2(k1−mv
~ )(x−vt)}

}]
(19)

and jB =
~
m

k3|C|2. (20)

The expression (19) describes the sum of the incident
and reflected probability current densities and (20)
shows the transmitted one. The complex coefficients
of A, B, and C can be generally expressed in the
form of

A = aeiθa , B = beiθb and C = ceiθc , (21)

respectively, where all variables are real values. We
can describe the boundary condition of (12) in the
other form as

a + b = c and θa = θb = θc. (22)

Since |ΨA|2 and |ΨB |2 are continuous at x = vt, we
obtain (a + b)2 = c2 . On the other hand, the con-
tinuity condition of the probability current density
gives the relationship of

k1a
2 + k2b

2 +
2mv

~
ab = k3c

2, (23)

and we find the two expressions:

b

a
=

k1 − k3

k1 + k3 − 2mv
~

(24)

and
c

a
=

2k1 − 2mv
~

k1 + k3 − 2mv
~

, (25)

that arrive at well-known results when the poten-
tial step does not move i.e. v = 0. The probability
current density in region A (expression (19)) can be
separated in the two components of the incident and
the reflected current densities as follows:

jinc =
~
m

k1|A|2 (26)

and jref = − ~
m

[
k2|B|2

+
mv

~

{
AB∗ei{2(k1−mv

~ )(x−vt)}

+ A∗Be−i{2(k1−mv
~ )(x−vt)}

}]
.(27)

We finally obtain reflectivity and transmissivity by
dividing Jref and JB by Jinc:

R =
−k2b

2 − 2mv
~ ab cos

{
2

(
k1 − mv

~
)
(x − vt)

}

k1a2

(28)

and T =
k3c

2

k1a2
. (29)

Using the expressions (28) and (29), R + T can be
confirmed to be unity at the boundary.

We can easily verify our results by considering the
case of v = 0. The expressions (24) and (25) arrive at
well-known results when v = 0. The expression of T
is the same as the one where v = 0. It is interesting
that R depends on x and t. The fact derives from the
interference effect of the incident and reflected wave
functions. The interference can occur only when the
potential step is moving. It is caused by the differ-
ence between the absolute values of k1 and k2. We
suppose that the effect can be applied to quantum
wave interference devices.

(B) Case II (k1 <(16))

We consider the case that k1 is smaller than the
critical wave number of (16). We pointed out that
transmitted wave function should be of a damping
oscillation scheme. The k1 should be larger than
mv/~ in order that the group velocity of the incident
wave function is larger than v to reach the boundary.
We assume that k1 is far larger than mv/~ from the
semi-classical point of view. The different point from
case I is that k3 becomes a complex number as

k3 = γ + iβ, where γ =
mv

~

and β =

√
2mV0

~2
−

(
k1 −

mv

~

)2

> 0, (30)

and then we obtain ω3 using the relationship (11),

ω3 = σ + ivβ,

where σ =
~

2m

(
k2
1 − 2mv

~
k1 +

2m2v2

~2

)
.(31)

By substituting (30) and (31) for the expression
(10), we obtain the wave function in region B as

ΨB = Ce−β(x−vt)+i(γx−σt). (32)

Therefore, the probability density and the probabil-
ity current density in region B are expressed as

|ΨB |2 = |C|2e−2β(x−vt) (33)

and jB =
~
m
|C|2γe−2β(x−vt) (34)

Dividing (34) by (33) shows us that the group veloc-
ity is v. On the basis of the same discussion of (21)
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and (22) before, we can obtain (a + b)2 = c2 also in
this case, and draw the relationship of

k1a
2 + k2b

2 +
2mv

~
ab = γc2 (35)

in stead of (23). Using a + b = c, we get the simple
relations of

b

a
= 1,

c

a
= 2. (36)

We substitute (36) for (28) and (29) to arrive at

R = 1 − 4
mv

~k1
cos2

(
k1 −

mv

~

)
(x − vt) (37)

T = 4
mv

~k1
e−2β(x−vt). (38)

We can confirm easily that R + T = 1 at the bound-
ary and that R = 1 and T = 0 if v = 0. The semi-
classical condition denoted in the previous section
plays an important role here. It ensures that T is
less than unity.

4. Conclusion

We investigated the characteristics of the wave
function and probability current density in a sys-
tem with the potential step moving toward +x di-
rection at a constant velocity v. Since the position
of the boundary depends on time, we solve the time-
dependent Schrödinger equation in one dimension.
We used our boundary condition that the phases of

the wave functions at the boundary are the same in-
stead of the ordinary condition that the first deriva-
tive of the wave function is the same at the boundary.
We found the relation between the wave numbers of
the incident and the reflected wave functions. The
absolute value of the wave number is changed when
the wave function is reflected at the boundary. When
the potential step is finite, the wave function can be
transmitted if the energy of the incident wave func-
tion is larger than the effective potential height that
is dependent on v.
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