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ABSTRACT 

 

Bayesian inference of model parameters for the time dependent carbonation depth � � ����  of 
concrete is presented.  The statistical model is assumed to have a form of � � ��� 	 
  where 
� implies the carbonation coefficient and 
 stands for the modeling error which is assumed to have a 
normal distribution with zero mean and unknown variance.  By the use of existing data for the natural 

outdoor exposed concrete, the posterior distributions of the parameters are obtained by the Markov 

Chain Monte Carlo (MCMC) method, the implementation of which is made using WinBUGS.  The 

corresponding linear statistical model equation is also considered, where the effect of small variance of 

the error on the number of samples in MCMC is illustrated.  The compatibility of probability 

distributions of the carbonation coefficient for different values of � is examined.  It is shown that the 
carbonation coefficient derived from the carbonation depth for each � has a lognormal distribution if 
� � 0.5 (the square-root-t law), whereas, for � � 0.33, a normal distribution is a better approximation. 
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1. Introduction 

Carbonation of concrete is one of the major factors 

causing the deterioration of reinforced concrete 

structures.  The corrosion of steel reinforcement will 

occur due to carbonation, resulting in cracking and 

peeling of the cover concrete.  This eventually affects 

the lifetime of reinforced concrete structures.  Accurate 

service life prediction is, hence, necessary for the 

purpose of both avoiding unexpected high repair costs 

and reducing the life cycle cost. 

Carbonation of non-cracked concrete proceeds from 

the surface to the inside, and the distance between the 

surface and carbonation front is defined as the 

carbonation depth.    The carbonation depth is a time 

dependent  process,  the rate of which may depend on 
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several properties of concrete, e.g., the water cement 

ratio, air content, and admixtures.  The modeling of the 

temporal  variation  of  the  carbonation  depth has 

extensively been studied on the basis of the square-root-t 

law
1,2,3)
; that is, the carbonation depth is proportional to 

√� with the time independent coefficient termed as the 
carbonation coefficient.  Recent studies

4,5,6)
 have shown 

that the power of �  is not necessarily equal to 0.5.  
This is because through the carbonation process the pore 

volume reduction takes place and as a result the 

diffusivity or the carbonation coefficient changes in time, 

in contrast to Fick's law of diffusion.  This reduction in 

the carbonation rate and its influence on the time 

dependent carbonation depth may be taken into account 

by putting the power of � to be less than 0.5, while 
keeping the carbonation coefficient as a constant. 

On the other hand, the time dependent carbonation 

depth generally involves randomness and uncertainty due 

to modeling errors and the variability of the material 

properties of concrete.  Therefore, statistical and 

probabilistic approaches are necessary and efficient for 

practical purposes
7)
. 
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This article presents Bayesian statistical inference for 

model parameters of the carbonation depth.  The 

Bayesian approach has the capability of treating 

uncertainties involved in the estimation of parameters.  

In other words, the parameter estimation comes up with 

the posterior distribution for given random samples of 

relevant model variables.  For presenting illustrative 

examples, random samples are taken from existing data 

for the outdoor exposed concrete
4)
.  On the basis of 

Bayes’ theorem, the posterior distribution is obtained by 

the Markov Chain Monte Carlo (MCMC) method
8)
, the 

implementation of which is achieved by the open source 

software, WinBUGS
9)
. 

Note that the Bayesian regression analysis for a 

linearized statistical model equation is also presented.  

The effect of the small variance of the modeling error in 

the linear model upon the number of samples for 

convergence of chains is also demonstrated in this study. 

Finally, the goodness of fit of probability 

distributions for the carbonation coefficient is examined. 

Sample data derived from the measured values of the 

carbonation depth divided by ��  are utilized for this 
purpose.  It is shown that the carbonation coefficient 

has a lognormal distribution if � � 0.5  (the 

square-root-t law), whereas the normal distribution 

becomes more appropriate when � � 0.33 which is the 
result of the Bayesian estimate. 

 

2. Statistical Model of Carbonation Depth 

The equation of statistical prediction model for the 

carbonation depth � � ����  is assumed to have the 
following form: 

 

� � ��� 	 
                               �1�                
 

where � and � are model parameters, and 
 implies 
the modeling error having the zero mean normal 

probability distribution denoted by 

 


 ~ ��0, ���                                �2�             

 

in which �� is the unknown variance.  This implies 
that �  is normally distributed with mean ���  and 
variance ��. 
For the given sets of data (��, ��) where �� � �����, 

the estimation of the model parameters �, � and �� 

can be made by nonlinear regression analysis methods.  

On the other hand, Eq.(1) may be rewritten as 

 

ln� � ln� 	 � ln� 	  ε�                       �3� 
 

where  

 


�~ ��0, ����                                  �4�            

 

Thus, ln�  has a normal distribution with mean 
ln� 	 � ln� and variance � �. 

In this paper the Bayesian approach is applied to 

Eqs.(1) and (3).  The prior distribution may be 

subjective, so as to reflect expert opinions, and/or 

non-informative in a sense that there is little or no prior 

knowledge about the parameters. 

 

3. Bayesian Inference 

Let !� , " � 1~#,  be random samples of the 
population ! , the parameter of which is denoted by 
$ � �$%, $�, … , $'�, where # and ( imply the number 
of random samples and parameters of !, respectively. 
Let )�*|$�  be the conditional probability density 
function of !, given $, which can be considered as the 
likelihood function of $, given *.  Let )�$� be the 
prior distribution of $.  Then, the posterior distribution 
of $ , )�$|*� , is obtained by Bayes’ theorem as 
follows

10)
: 

 

)�$|*� �  )�*|$�)�$�
, )�*|$�)�$�-$                         �5� 

          

where the denominator implies the normalizing constant. 

In this study !� �(�� , ��) with a deterministic ��  and 
$ � ��, �, ���.  The likelihood function thus becomes 
a function of # independent and identically distributed 
samples as follows: 

 

)�*|$� � . 1
√2πσ�

1

�2%
exp 67 ��� 7 �89 ��

2σ� :           �6� 
 

where �89  is the mean value of ��  which is equal to ����. 
For the prior distribution we assume that � and � 

have a zero mean normal distribution and �� an inverse 
gamma distribution; that is, 
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�, � ~ ��0, σ<��,   ��~ =>�ν<, λ<�             �7�      
 

in which σ<� , ν< (shape parameter) and λ< (scale 
parameter) are hyper parameters.  Note that the inverse 

gamma probability density function is given in the form: 

 

B�*|ν<, λ<� � C<DE
F�G<� �1

*�DEH% exp I7 C<* J , * K 0    �8� 
   

To represent the non-informative prior distribution, a 

large value for σ<� and small values for ν< and λ< are 
assumed

11)
.  Figure 1 shows an illustration of the 

inverse gamma probability density function with 

ν< � λ< � 0.001. 
 

 

Fig.1 The inverse gamma distribution (��� with ν< � λ< �
0.001 

 

The MCMC method enables us to draw samples from 

the posterior distribution )�$|*�.  A major advantage 
in MCMC is that there is no need to compute the 

normalizing constant in Eq.(5) which usually involves 

multidimensional numerical integration. 

 

4. Prediction of Carbonation Depth 

Test data of carbonation for outdoor exposed 

ordinary and flowing concrete at 2, 4.5, 15 and 25 years 

are used
4)
.   Numerical values of the carbonation depth 

obtained from the figures of the referred measurements 

are given in Table 1.  The numeral shown in the 

specimen identification implies the value of slump in cm.  

A total of 20 pairwise data (�� , �� ) are used for the 
parameter estimation.  

The statistical prediction model for the carbonation 

depth shown in Eq.(1) is assumed.  Three parameters �, 
�  and ��  are supposed to have the non-informative 
prior distribution given by Eq.(7) with �<�=10,000 and 

ν< � λ< � 0.001. 
 

Table 1 Carbonation depth with respect to time 

 

               C: Ordinary concrete, F:Flowing concrete 

 

Figure 2 presents the history of samples of each 

parameter in which the total number of samples, �, is 
100,000 and the burn-in period (discarded samples at the 

beginning of the MCMC run), �M, is 10,000.  It can be 
observed that sufficient mixing is achieved, implying 

that the samples are in the steady state.  In other words, 

the samples used for obtaining Bayesian estimates are 

from convergent Markov chains.  Note that mixing is 

not yet fully achieved when � �10,000 (cf. Fig.6). 
 

 

(a) � 

 

(b) � 

 

(c) �� 
Fig.2 Sample histories of parameters with � �100,000 and  

               �M=10,000 
 

The posterior distribution of the samples of each 

parameter is given in Fig.3 and statistics of those 

parameters are presented in Table 2.  It can be observed 

from the mean and median values that � and � are 
nearly normal.  Values of the coefficient of variation of 

� and � are 9.8% and 12.3%, respectively, and those 

0 5 10 15 20

0
.0
0
0

0
.0
0
1

0
.0
0
2

0
.0
0
3

0
.0
0
4

0
.0
0
5

x

d
in
v
g
a
m
m
a
(x
)

(mm)
Duration

years C-12 C-15 C-18 C-21 F8 F12
2 6.4 3.4 4.8 4.2 6.1 5.3

4.5 7 6.6 6.4 6.4 6.2 6.3
15 8.1 9.1 10.2 9.4 11.5 8.8
25 － － － 10 － 13.9

Specimen

p1

iteration

10000 25000 50000 75000 100000

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

p2

iteration

10000 25000 50000 75000 100000

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

var

iteration

10000 25000 50000 75000 100000

    0.0

    2.0

    4.0

    6.0

    8.0

� 

β 

�� 

- 47 -

Memoirs of Akashi National College of Technology No.52 (2009.12)



are smaller than that of �� (37.9%).  If the posterior 
distribution of ��  is approximated by the inverse 
gamma distribution, then the shape and scale parameters, 

ν and λ respectively, may be obtained by statistics given 
in Table 2 as follows. 

 

ν � �(OP#
QR �� 	 2 � 8.978 

λ � (OP# · �G 7 1� = 11.169 
 

 

(a) � 

 

(b) � 

 

(c) �� 
Fig.3 The posterior distribution of each parameter 

 

The resulting probability distribution is shown in Fig. 4.  

A good agreement is observed when compared with that 

in Fig.3. 

From Table 2 we can see that the mean values of the 

carbonation coefficient, �, and the power of �, �, are 
3.96 and 0.33, respectively.  These Bayesian estimates 

are fully consistent with the deterministic regression 

analysis results as given in Ref.4, the values of which are 

3.897 and 0.34. 

 

Table 2 Statistics of each parameter 

 

 

Fig.4 The inverse gamma distribution ( ��) 
 

5. Illustration of Additional Bayesian Updating 

Assuming that the posterior distribution of the model 

parameters has been expressed by known probability 

distribution functions,  then  Bayesian updating can be 

 

Table 3 Statistics of each parameter (Additionally updated) 

 

 

 

(a) � 

 

(b) �� 
Fig.5 Comparison between prior and posterior distributions 
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made by using the prior distribution replaced by the 

obtained posterior one, and applying Bayes' theorem 

again to update the posterior distribution.   

Table 3 shows statistics of each parameter of the 

updated posterior distribution obtained again by the use 

of WinBUGS.  Note that, for the purpose of illustration, 

the same 20 parewise data given in Table 1 are employed 

in the updating.  It can be observed that the mean values 

of � and � are almost the same as those in Table 2, but 
the standard deviations are reduced to almost one-half.  

This means that the uncertainty existing in the parameter 

estimation is decreased to a certain extent through the 

Bayesian updating. 

Figure 5 presents the comparison between the prior 

and posterior distributions of �  and �� , where the 
dotted line denotes the posterior distribution.  It is seen 

that not only the standard deviation, but also the mean 

value of ��, has been decreased. 
 

6. Bayesian Linear Regression Analysis 

Another possible Bayesian approach is to make use 

of the statistical model Eq.(3) instead of Eq.(1).  The 

pairwise data (��, ��) are now changed into (ln��, ln��).   
 

Table 4 Statistics of each parameter 

 

 

 

 (a) History of �: �=10,000, �M=1000 for model eq.Eq.(1) 

 

 (b) History of �: �=10,000, �M=1000 for model eq.Eq.(3) 
Fig.6 Effect of small variance on convergence 

 

The result of the Bayesian regression analysis is 

given in Table 4.  Statistics of � are derived from ln � 

under the assumption that � is lognormal.  However, 
since the variance of ln �  is rather small, �  can be 
considered nearly normal.  We can see that � and � 
are in good agreement with those given in Table 2, 

whereas the uncertainty of modeling error, � �, is much 
smaller than that of �� .  The effect of this small 
variance in the modeling error upon the MCMC analysis 

is demonstrated by examining the number of samples 

which are necessary for convergence of chains.  Figure 

6 presents sample histories of the posterior distribution 

of �, and reveals that 10,000 samples are insufficient for 
convergence of chains for Eq.(1), but sufficient for 

Eq.(3). 

 

7. Probability Distribution of the Carbonation 

Coefficient 

From the data of the carbonation depth, ��, given in 
Table 1, data of two different carbonation coefficients, 

��<.V  and ��<.WW , are used to find the compatible 
probability distribution of each carbonation coefficient.  

Here, ��<.V  denotes the carbonation coefficient 

calculated by ��/��  with � � 0.5  for each � , and 
��<.WW  is similarly defined.  Plotting these data on 
several probability papers enables us to find the most 

suitable probability distribution for the respective 

carbonation coefficient.  In this study, consideration is 

limited to the case of normal and lognormal distributions 

only. 

Figure 7 shows the result of linear least squares 

fitting for the plotting on normal and lognormal 

probability papers, in which the ordinate represents the 

value of ΦZ%�[��  with Φ�·� , the standard normal 
probability distribution function, and 

 

[� � "
# 	 1 , " � 1~#                            �9� 

         

where # means the number of data. 
Table 5 gives the result of \� , which provides 

information on the goodness of fit, for each probability 

distribution.  We can see that the lognormal distribution 

is more suitable when � � 0.5 , but the normal 
distribution seems to be more appropriate when 

� � 0.33. 
 

ln α α β σ'2

mean 1.36 3.91 0.33 0.026
median 1.36 3.90 0.33 0.025

SD 0.080 0.31 0.039 0.010
SD:Standard Deviation
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(a) Normal probability paper 

 

(b) Lognormal probability paper 

Fig.7 Least squares fitting of probability distributions;  

○�� � 0.5� and ×(� � 0.33)  
 

Table 5 Results of the goodness of fit 

 

 

8. Conclusions 

Carbonation of concrete is one of the major factors 

causing the deterioration of reinforced concrete 

structures and thus reducing their service life prediction.  

In this study an attempt is made to utilize the Bayesian 

inference model for updating the model parameters of 

carbonation depth prediction. The following observations 

are made: 

(1) The Bayesian method was applied to the prediction of 

the carbonation depth of concrete, and WinBUGS was 

found to be efficient for the implementation of the 

MCMC algorithm.   

(2) For a given set of data of the carbonation depth the 

Bayesian approach can be easily applied to get the 

posterior distribution of model parameters, and further 

additional updating can be made even if only a small 

number of data is available. This will be useful for 

making decisions and improving risk management of 

structures with limited information. 

(3) The goodness of fit of probability distributions for the 

carbonation coefficient may depend on the rate of 

carbonation.  For the given parameter space, the 

lognormal and normal distributions are appropriate for 

cases where � � 0.5 and 0.33, respectively. 
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